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Abstract

With the recent advances in autonomous driving and the
decreasing cost of LiDARs, the use of multimodal sensor
systems is on the rise. However, in order to make use of
the information provided by a variety of complimentary sen-
sors, it is necessary to accurately calibrate them. We take
advantage of recent advances in computer graphics and im-
plicit volumetric scene representation to tackle the problem
of multi-sensor spatial and temporal calibration. Thanks
to a new formulation of the Neural Radiance Field (NeRF)
optimization, we are able to jointly optimize calibration
parameters along with scene representation based on ra-
diometric and geometric measurements. Our method en-
ables accurate and robust calibration from data captured
in uncontrolled and unstructured urban environments, mak-
ing our solution more scalable than existing calibration so-
lutions. We demonstrate the accuracy and robustness of
our method in urban scenes typically encountered in au-
tonomous driving scenarios.

1. Introduction
Most robotic and intelligent systems rely heavily on sen-

sory information to achieve various tasks. Moreover, com-
monly encountered sensor setups for autonomous driving
consist of multiple sensors acquiring different data modal-
ities (e.g. cameras, LiDARs, IMUs, GNSS systems, etc.)
which can greatly improve the performance on different
tasks such as mapping [2], localization [28] and percep-
tion [33].

However, to correctly exploit and merge the information
provided by all sensors, it is important to represent their
data in a common reference frame. Spatial extrinsic cali-
bration is the process that determines the relative geometric

Figure 1. Effect of calibration on novel view synthesis: training
positions in red, ground truth positions in green, reference po-
sition in blue. The RGB images (top) and depth maps (middle)
are rendered from an implicit neural 3D scene trained from non-
calibrated (left) and calibrated with MOISST (right) sensors.

transformation between the sensor poses by considering a
6-DoF rigid-body transformation. Although accurate spa-
tial calibration is essential in multi-sensor setups, it is often
not sufficient due to time synchronization issues between
the different sensors. Time synchronization is the process
that determines the time offset between the different sensor
measurements, in the case there is no hardware synchro-
nization which would eliminate any delay.

Current existing methods commonly require the use of
calibration targets placed in the scene to fuse all sensors
in a common frame [35, 3]. This is unpractical in many
cases, especially for dynamic tasks, where the calibration
setup must be redone regularly. Although some papers of-
fer solutions to bypass this constraint by detecting salient
geometric features (e.g. edges [15, 34], planes [18]) within
acquired scenes, such features might not be present in all
kind of environments.



Furthermore, these methods often do not consider the
possible asynchronization of the sensors. The effect of a
wrongly synchronized rig can have a consequential impact
on the performance depending on the task. Moreover, un-
considered time offsets within calibration can strongly de-
generate extrinsic estimation leading to suboptimal results.

Considering all the issues mentioned above, we intro-
duce our new method called MOISST: Multimodal Opti-
mization of Implicit Scene for SpatioTemporal calibration.
MOISST is a novel calibration method which leverages an
implicit neural 3D scene representation known as Neural
Radiance Fields (NeRF) [11]. It can be trained with any
kind of sensor providing radiometric or geometric informa-
tion on a given 3D scene. This representation is by na-
ture the common reference frame used for the sensor fu-
sion. We take advantage of the differentiable property of
our scene representation to simultaneously learn the scene’s
geometry and colors, and the poses given to the neural net-
work. Unlike existing NeRF-based methods of pose re-
gression [32, 6, 9], we consider the rigid constraint in the
multi-sensor rig to reduce the number of optimized param-
eters. By using a time-parameterized differentiable formu-
lation for the main sensor trajectory, we can also detect and
compensate potential time offsets between the sensors. To
the best of our knowledge, tackling the problem of multi-
sensor spatiotemporal calibration using implicit representa-
tions has not been proposed before in the literature.

Thanks to our formulation, we are able to propose an
offline targetless solution to spatiotemporal calibration of
multimodal sensors, that is also structureless, as we do not
require specific geometric structures like edges or planes in
the scene for our method. Compared to other methods and
because of the aforementioned characteristics of our solu-
tion, MOISST is especially adapted to perform automatic
re-calibration of a multi-sensor device during the full life-
cycle of the system. MOISST is a simple – it can be run
from acquisition data recorded in any environment – and
inexpensive – it does not require target or external hard-
ware – calibration solution, which are crucial features for
robots and large scale fleet of autonomous vehicles.

2. Related works

2.1. Multimodal extrinsic and temporal calibration

Extrinsic calibration for multimodal sensors is a well
studied subject that can be categorized in two main groups:
target-based and targetless methods.

2.1.1 Target-based calibration

Zhang et al. [35] were the first to introduce the use of a pla-
nar checkerboard target for camera and laser range finder
calibration, by using the latter to determine the checker-

board plane, and the pattern seen by the camera to calculate
its pose. Three pairs of capture measurements are enough to
deduce extrinsic parameters between both sensors. Geiger
et al. [3] propose a solution to calibrate the sensors with
a single capture, by placing multiple targets in the scene.
While these methods provide satisfactory calibration accu-
racy, they necessitate the placement of targets in the scene,
which might not be available or practical to place in typical
real-world scenarios.

2.1.2 Targetless calibration

Targetless methods usually use the concept of mutual in-
formation, by matching corresponding elements obtained
through different type of sensors. This can be edges for
visible cameras, depth gradient for LiDARs [15, 34], or the
use of correspondence between image intensity and surface
normals [26]. However, by relying on specific geometric
features, these methods only work in a well structured scene
with noticeable, recognizable and detectable patterns such
as straight lines or edges and often work only in indoor envi-
ronments. There is also a set of deep learning based meth-
ods [20, 5, 10], able to find the transformation between a
camera capture and a LiDAR scan. However, these meth-
ods are trained in a supervised manner, needing a labeled
dataset, and are prone to overfitting, limiting their use to
environments reflecting the training dataset.

Although the previously mentioned methods achieve sat-
isfactory performance given ideal conditions, they suppose
a perfectly time-synchronized set of sensors, which is possi-
ble through specific hardware [23] but is often challenging
and sensor dependant (i.e. most low-cost cameras do not
support such features). There exists some methods tack-
ling temporal calibration, both target-based [7], or target-
less [18], they require however additional sensors such as
calibrated camera-IMU pair to obtain a precise trajectory.
With the methods proposed by Taylor et al. [27] and Park et
al. [17], visual and LiDAR odometry are used for calculat-
ing trajectories for each sensor and matching them, allow-
ing both spatial and temporal calibration. Nevertheless, this
approach can generate a progressive drift with the accumu-
lated transformations between the frames.

Contrary to the previously mentioned methods, MOISST
does not require any targets (i.e. targetless) and determines
both spatial and temporal calibration parameters by only re-
lying on the poses of a single sensor, avoiding the cumu-
lative errors in the different per-sensor trajectories. At the
same time, we fuse information from all sensors, and thanks
to the use of a dense implicit scene representation, we do
not require specific geometric structure (i.e. structureless).
This approach allows compatibility with a greater variety of
scenes and allows us to scale to almost all real-world sce-
narios.



2.2. Neural 3D scene representation

NeRF [11] is an implicit representation of a 3D scene
primarily used for novel view synthesis. From a set of
images and their corresponding camera poses, the model
learns the 3D geometry through differentiable volume ren-
dering. NeRF provides a continuous representation, re-
sulting in improved rendering fidelity and compactness
compared to classical explicit scene representations [29].
Beyond the rendering ability, many recent methods have
used these implicit scene representations for downstream
robotics tasks [24, 4, 12].

NeRF stores all the color and density information of the
scene in a multilayer perceptron (MLP), and allows any ren-
dering resolution as the representation is continuous. The
model takes as input a 3D coordinate and a direction vector,
outputs a color and density information for this 3D point,
and is trained through a differentiable rendering procedure.
A sinusoidal encoding [25] of the input coordinate maps the
low dimensional 3D position and direction to a higher di-
mension representation, allowing the rendering of a highly
detailed scene representation. To speed-up convergence, In-
stant Neural Graphics Primitives (Instant-NGP) [13] was
introduced, allowing much faster convergence with higher
quality rendering. It uses a multi-resolution hash encoding
instead of sinusoidal encoding, considerably reducing the
size of the trained MLP.

The training of NeRF requires mainly RGB images from
cameras, optionally depth information such as point clouds
from LiDARs [19], along with registered poses for each
sensor frame. The final rendering quality is highly depen-
dant on the precision of these poses, as seen in Fig. 1, where
the result without optimization has incorrect geometry, pro-
duces low quality novel views and is not usable. As an
answer to this limitation, NeRF−− [32] exploits the fully
differentiable structure of NeRF to not only train the NeRF
model, but also to optimize the camera poses. This makes
the model robust to noisy poses, as it is able to optimize both
the camera poses alongside the NeRF model. SCNeRF [6]
uses the first two columns of the rotation matrix to formu-
late rotations instead of Rodrigues formula to achieve better
convergence, and BARF [9] improves upon these methods
by using low-to-high frequency release for the input posi-
tional encoding, avoiding local minima during pose opti-
mization.

In our proposal, because we focus on multi-sensor cal-
ibration, we only optimize the extrinsic transformation be-
tween the sensors instead of optimizing each pose of each
frame independently. Indeed, in a rigid sensor setup,
sensors are not allowed to move freely relative to each
other. Compared to aforementioned methods, this novel
and calibration-focused formulation reduces the number of
parameters to be optimized and is more robust to outliers
thanks to the rigidity constraint imposed on each pose. The

proposed formulation also allow us to optimize the time
offset between sensors, which is often hard to be achieved
within the same optimization framework and may require
additional information.

3. Method
3.1. Notations and background

3.1.1 Notations

We consider a multi-sensor system with S sensors with r ∈
[1, S] being our reference sensor and each sensor is either
a camera or a LiDAR. We use the following notations to
describe our method:

• {Ni}i∈[1,S] : set of number of frames captured by each
sensor,

• ni, n ∈ [1, Ni]: index of frames captured by sensor i,

• tni ∈ R+: the absolute timestamp of frame ni relative
to the sensor i clock,

• δi ∈ R: the time offset between the reference frame
clock and the sensor i clock,

• wT
i(t) ∈ R4×4: the pose transformation matrix of

sensor i at time t (time relative to sensor i clock) in the
world reference,

• jT
i ∈ R4×4: the extrinsic homogeneous transforma-

tion matrix from sensor i to sensor j.

We aim to calibrate our system according to the refer-
ence sensor. The goal is to obtain the transformation matri-
ces jT

i and time offsets δi between the sensors to calibrate
and the reference one. We consider that we know the pose
of sensor r in a global frame, which could be easily ob-
tained through SLAM [14] or Structure-from-Motion [21].
We also consider its clock as the reference clock, δr = 0.
From poses of reference sensor, wT

r(tnr ), nr ∈ [1, Nr],
we build a continuous trajectory. We do that by interpo-
lating between the existing poses, and extrapolating outside
the defined temporal bounds by extending the transforma-
tions at the beginning and the end of the sequence. This
modeling process is very similar to what is defined in [17].
For the interpolation functions, we used spherical linear in-
terpolation (SLERP) [22] for the rotation, and linear inter-
polation (LERP) for the translation. We denote this interpo-
lation function as Tr:

wT
r(t) = Tr(t). (1)

3.1.2 Spatiotemporal calibration

Given the spatial extrinsic calibration and the time offset
of the other sensors regarding our reference sensor, we can
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Figure 2. Overview of MOISST optimization framework. First, the model is initialized with rays generated using rough spatial and temporal
calibration priors in addition to the reference frame trajectory. After each optimization step, the rays are regenerated and fed to the NeRF
model. We then render RGB images and depth maps which are used along the ground truth ones to compute the losses and propagate the
gradients. Gradient descent algorithm is finally used to optimize both NeRF and calibration parameters.

compute the pose of sensor i in a global frame with the for-
mula:

wT
i(tni + δi) = Tr(tni + δi) iT

r. (2)

3.1.3 Implicit neural scene representation

An implicit neural representation models a scene with a
neural network by mapping coordinates as inputs to quan-
tities of interests, such as color or density, as outputs. By
evaluating points along camera rays and composing their
densities and colors through volumetric rendering, such
methods can synthesize RGB images and depth maps1 from
an arbitrary sensor pose.

In order to train said neural network on a specific scene,
it is necessary to have a training set with sensor information
and a pose associated. This information may be an RGB
image in the case of visible camera, or a point cloud in the
case of a LiDAR. We aim to find the parameters of the neu-
ral network Θ that minimizes the difference between the
provided information (Ini - image ni of sensor i - or Dni -
depth information ni of sensor i) and the rendered result by
the model defined as:

RI

(
wT

i(tni) | Θ
)
, (3)

RD

(
wT

i(tni) | Θ
)
, (4)

with RI being the model inference and ray composition
function that returns a RGB image prediction of frame ni

for sensor i and RD being equivalent to RI but returning
rays depth instead of colors. By minimising the loss Ltotal

1We can estimate depth of ray with alpha composition of distances from
the center of the ray to the sampled points.

defined as:

Ltotal = λCLC + λDLD, (5)

LC =

S∑
i=1

Ni∑
ni=1

∥∥RI

(
wT

i(tni) | Θ
)
− Ini

∥∥2
2
, (6)

LD =

S∑
i=1

Ni∑
ni=1

∥∥RD

(
wT

i(tni) | Θ
)
−Dni

∥∥2
2
,(7)

with λC , λD weighting hyper-parameters, we can estimate
the optimal network parameters Θ̂ satisfying:

Θ̂ = argmin
Θ

(Ltotal). (8)

As explained by Wang et al. [32], because the scene rep-
resentation we use is fully differentiable, it is possible to
optimize the input poses with gradient descent jointly with
the radiance field parameters. The optimization objective
becomes the following:{

Θ̂,wT̂
i
}
= argmin

Θ,wT i

(Ltotal). (9)

3.2. MOISST Optimization formulation

In this section, we introduce our novel optimization for-
mulation for multi-sensor system spatiotemporal calibra-
tion. Considering a multi-sensor system such as a robot or
an autonomous car, we know that the poses of each sen-
sor observation are not independent, as there exists a rigid
transformation between each sensor. Because we know the
trajectory Tr of the reference sensor r, we can express the
absolute pose of each remaining sensor according to sensor
r (see equation 2). Substituting wT

i in equation 3 leads to
the following formulation:

RI (Tr(tni + δi) iT
r | Θ) . (10)



Similar reasoning can be made for depth rendering function
RD. Our new formulation of the rendering functions can be
integrated in the color loss of equation 6:

LC =

S∑
i=1

Ni∑
ni=1

∥RI (Tr(tni + δi) iT
r | Θ)− Ini∥22 .

(11)
We can replace the depth rendering function in the same
manner in equation 7. This leads to our new optimization
formulation: {

Θ̂, iT̂
r, δ̂i

}
= argmin

Θ,iT
r,δi

(Ltotal), (12)

with iT̂
r and δ̂i the only parameters to optimize along with

the network weights. As the trajectory Tr is continuous over
time, we can also optimize the time offsets δi. With the
proposed method, we only have to optimize the extrinsic
transformation between all sensors and the reference sensor,
reducing the number of optimized parameters compared to
the full set of frame poses as in equation 9. A summary of
our proposal is shown in Fig. 2.

3.3. Optimization details

3.3.1 Additional losses for geometric consistency

We add two more losses using image patches to further im-
prove the geometry of the NeRF model and the proper esti-
mation of calibration parameters. The first loss is the struc-
tural dissimilarity (DSSIM) LSSIM [31], which minimizes
the difference in local 2D structures between the rendered
and the input image [30]. The second is the depth smooth-
ness loss LDS , also used by RegNeRF [16], which regular-
izes the depth variation in randomly selected patches of the
images to reduce variation of the predicted depth. Our final
loss function becomes as follows:

Ltotal = λCLC + λDLD + λSSIMLSSIM + λDSLDS

(13)
with λC , λD, λSSIM , λDS the weight factor for each loss.

3.3.2 Network architecture

We use an implicit scene representation similar to the
nerfacto model of Nerfstudio2 open source framework.
It is inspired by the proposal network introduced in MipN-
eRF 360 [1] with two proposal radiance fields and one final
radiance field that outputs the color and density for the volu-
metric rendering. The proposals are used to samples points
along the rays where the density is high. We use the hash

2https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html

grid introduced in instant NGP [13] for positional encod-
ing and spherical harmonics for directional encoding. We
found this model to be a good trade-off between speed and
accuracy for our spatiotemporal calibration problem.

3.3.3 Regularization

In BARF [9], the idea of low-to-high frequency release for
the positional encoding allows smoothness in the scene,
which helps the optimization of the poses to avoid local
minima. With our architecture using the instant-NGP back-
bone, we do not have a sinusoidal positional encoding, but a
multi-resolution hash grid instead. In order to mimic BARF,
we introduce a weight decay to the hash encoder for a few
epochs, before removing it, allowing higher frequency in-
formation to be learned afterwards. We also wait a few
epochs before applying the depth loss LD, as we found that
initializing the geometry solely through visual supervision
helps the whole system to converge better.

3.3.4 Spatiotemporal priors

We use spatial calibration priors to initialize the extrinsic
parameters of the sensors. For the temporal shift, we set the
initial estimate to 0 as we found that our solution was very
robust to temporal calibration. Ablation on the sensibility
of our method to initial prior is provided in section 4.5.

4. Experiments
We evaluate MOISST on the NVS training set from the

recent KITTI-360 dataset [8] which involves difficult static
outdoor scenarios with 2 forward and 2 side facing cameras
and a top-mounted Velodyne HDL-64E LiDAR sensor. The
Lidar scans provided by the KITTI-360 dataset are undis-
torted using motion compensation. We report results on se-
quences 0, 1, 2 and 4 and consider the front-left camera
as our reference sensor r for all experiments3. We apply
±50 cm translation and ±5◦ rotation offsets on all axes and
±100 ms time offset to simulate spatial and temporal cali-
bration errors, respectively. The geodesic distance and the
classical L2-norm are used to report the rotation and trans-
lation errors along all axes, and the average error over the
last 10 epochs is reported for fairness. Each training takes
between 1 and 4 hours depending on the number of selected
sensors on a high-end consumer grade GPU.

Implementation details: Given the sparser supervision
signal from re-projected LiDAR depth maps, color and
depth losses are balanced by λC = 1 and λD = 20. Fur-
thermore, as radiance fields require initial optimization to

3Experiments are not performed on Sequence 3 as it has missing cap-
tures of LiDAR scans.



Table 1. Spatial calibration accuracy.
Front-right camera LiDAR

Sequence Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)
0 2.3 ± 0.6 0.09 ± 0.02 8.2 ± 1.8 0.21 ± 0.08

1 1.6 ± 0.4 0.09 ± 0.02 7.3 ± 2.1 0.41 ± 0.08

2 1.2 ± 0.6 0.04 ± 0.03 13.5 ± 1.8 0.18 ± 0.10

4 2.2 ± 0.7 0.08 ± 0.06 9.9 ± 2.6 0.30 ± 0.10

learn depth through color supervision, depth loss is applied
after two epochs. Geometric consistency losses are empir-
ically balanced by λSSIM = 0.1 and λDS = 0.0001. We
use the Adam optimizer and train our network during 50
epochs for all experiments. We start with a learning rate of
1 × 10−2 for the network parameters and 5 × 10−5 for the
spatial and temporal parameters, and exponentially decay to
a factor of 1× 10−2 of the original learning rate. We apply
a weight decay of 1× 10−6 on the network parameters, in-
cluding the hash grid, then remove the weight decay of the
hash grid after 5 epochs as explained in section 3.3.3.

We perform extensive evaluation of our solution upon
three different conditions: in section 4.1 with a scenario
where we consider only spatial extrinsic noise, in sec-
tion 4.2 with only temporal miscalibration and finally in
section 4.3 by taking into account both spatial and temporal
calibration parameters.

4.1. Spatial Calibration

In this section, we only consider a spatial error, and re-
move the time offsets. We only optimize spatial parameters.
As we can see in Table 1, MOISST estimates calibration pa-
rameters with low rotation error, below 1° in all sequences.
As for translation, we are able to reach around 2 cm of error
on the front-right camera, and between 7 cm and 14 cm for
the LiDAR. The higher error in LiDAR translation calibra-
tion needs to be mitigated because of the relative precision
of the provided ground truth, as explained in section 4.4.2.

4.2. Temporal Calibration

In this section, we only consider a temporal error, and
remove the initial spatial error. We only optimize temporal
parameters. As shown by the results in Table 2, our method

Table 2. Temporal calibration accuracy.
Front-right camera LiDAR

Sequence Initial error (ms) Temporal error (ms) Temporal error (ms)

0
100 0.7 ± 0.3 7.6 ± 1.0

200 0.5 ± 0.3 6.2 ± 2.0

1
100 0.2 ± 0.2 1.5 ± 1.1

200 0.5 ± 0.3 1.1 ± 0.5

2
100 1.0 ± 0.3 14.0 ± 1.8

200 1.1 ± 0.3 13.8 ± 1.2

4
100 0.6 ± 0.3 3.4 ± 1.5

200 0.7 ± 0.3 14.2 ± 1.5

in able to temporally calibrate the front-right camera with
a precision under 1 ms, despite the high initial time offset
of 100 ms or 200 ms, knowing the camera is capturing at
around 10 fps. The LiDAR’s final temporal error is more
variable depending on the scene, reaching around 15 ms
at maximum. As mentioned previously, this higher error
might partially explain by the relative precision of the pro-
vided ground truth (see section 4.4.2).

4.3. Combined Calibration

In this section, we consider the full initial error as de-
scribed in section 4. We run MOISST on all four cameras
and the LiDAR of the KITTI-360 dataset. We can see in
Table 3 that our method is able to calibrate the 2 side cam-
eras, looking in completely different directions than our ref-
erence sensor. The performance is variable depending on
the sequence. For example, the sequence 0 is captured in
a very narrow road, giving the side cameras a small FOV,
reducing the overlap and causing a drop in accuracy.

4.4. Discussions

4.4.1 Comparison with structure-based methods

We wanted to compare our camera-LiDAR calibration re-
sults with the structure-based method from Yuan et al. [34],
but we could only obtain subpar results with their method
on the dataset we use (we obtained a mean translation error
of 60 cm and 4.08° of rotational error starting from a trans-
lation and rotational error of 50 cm and 5°, respectively,
on all axes). We found that it needed a denser point cloud
from the LiDAR than what was provided in the KITTI-360
dataset in order to find reliable edge features in the scene.
In addition, compared to our solution, this method is not
able to do camera/camera and LiDAR/LiDAR calibration,
or calibrate temporally.



Camera pose (real image) LiDAR pose (synthetic image)
KITTI extrinsic Our extrinsic KITTI extrinsic Our extrinsic

Figure 3. Limitation on KITTI-360 LiDAR ground truth calibration: we compare the alignment of re-projected 3D points from the LiDAR
on the front image using KITTI extrinsic calibration and our optimized extrinsic calibration. We also re-project the 3D points on a synthetic
image generated with the same pose as the LiDAR on the vehicle, in order to avoid parallax effect.

Table 3. Spatiotemporal calibration accuracy.
Front-Right Camera Left-side Camera

Sequence Translation error (cm) Rotation error (°) Temporal error (ms) Translation error (cm) Rotation error (°) Temporal error (ms)
0 1.1 ± 0.3 0.08 ± 0.02 0.5 ± 0.3 10.0 ± 0.7 0.41 ± 0.24 0.5 ± 0.2

1 2.0 ± 0.3 0.09 ± 0.02 0.9 ± 0.3 1.6 ± 0.6 0.16 ± 0.03 0.5 ± 0.3

2 1.8 ± 1.0 0.09 ± 0.05 0.5 ± 0.4 3.0 ± 0.6 0.06 ± 0.05 2.1 ± 0.3

4 1.9 ± 0.7 0.05 ± 0.01 1.3 ± 0.6 2.7 ± 0.4 0.05 ± 0.25 0.6 ± 0.5

Right-side Camera LiDAR
0 5.2 ± 0.7 0.12 ± 0.02 1.4 ± 0.4 9.3 ± 2.3 0.50 ± 0.17 0.04 ± 0.02

1 8.4 ± 0.7 0.26 ± 0.02 1.5 ± 0.4 10.6 ± 3.0 0.59 ± 0.08 6.9 ± 2.1

2 3.0 ± 0.9 0.07 ± 0.05 1.5 ± 0.6 15.8 ± 2.9 0.23 ± 0.11 2.3 ± 1.7

4 7.1 ± 0.6 0.08 ± 0.03 6.3 ± 0.8 14.0 ± 2.1 0.37 ± 0.09 22.4 ± 1.8

Table 4. Calibration accuracy with solely rotation or translation error.
Front-Right Camera LiDAR

Error type Initial error Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)

Rotation all axes
2° 1.6 ± 0.3 0.09 ± 0.01 9.2 ± 1.9 0.39 ± 0.09

5° 1.7 ± 0.5 0.07 ± 0.05 9.9 ± 2.3 0.4 ± 0.14

10° 127.2 ± 0.6 15.81 ± 0.02 104.4 ± 1.7 17.07 ± 0.13

Translation all axes
20cm 1.8 ± 0.4 0.09 ± 0.02 8.7 ± 1.5 0.46 ± 0.1

50cm 1.7 ± 0.5 0.09 ± 0.02 7.8 ± 1.2 0.5 ± 0.06

100cm 1.7 ± 0.3 0.09 ± 0.02 8.8 ± 2.4 0.43 ± 0.08

Table 5. Ablation study on optimized parameters.
Front-Right Camera LiDAR

Optimized parameters Translation error (cm) Rotation error (°) Temporal error (ms) Translation error (cm) Rotation error (°) Temporal error (ms)
Only spatial 103.0 ± 1.0 1.03 ± 0.03 – 104.8 ± 2.3 0.35 ± 0.07 –
Only temporal – – 89.6 ± 0.2 – – 100.9 ± 0.8

Spatial & temporal 1.9 ± 0.6 0.08 ± 0.01 1.2 ± 0.3 11.5 ± 2.1 0.44 ± 0.07 10.1 ± 1.3

Table 6. Poses accuracy for different optimized parameters.
Front-Right Camera LiDAR

Optimized parameters Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)
Only spatial 9.2 ± 1.2 0.44 ± 0.09 12.6 ± 1.7 0.54 ± 0.08

Only temporal 74.8 ± 0.8 8.8 ± 0.05 90.4 ± 1.1 8.8 ± 0.06

Spatial & temporal 2.0 ± 0.4 0.09 ± 0.02 8.9 ± 3.2 0.42 ± 0.09

4.4.2 Limitation of KITTI-360 LiDAR ground truth
calibration

In our experiments, we found that the extrinsic calibra-
tion between the front camera and the LiDAR provided by



KITTI-360 might be accurate only up to a few centimeters.
To show this, we performed the following experiment: we
re-projected the LiDAR points into the images captured by
the front camera according to: 1) the provided ground truth
calibration, 2) the extrinsic calibration we obtained after op-
timizing the spatiotemporal parameters. We also provided
alignment comparison using NeRF generated images at the
same location as the LiDAR position on the vehicle to avoid
parallax effect. The LiDAR is positioned on top of the cam-
era: some points re-projected on the images should not be
visible from the camera position. Results are presented in
Fig. 3 (more results in the supplementary video). Compar-
ing the alignment between the re-projected 3D points on the
real and synthetic images, we clearly see that our extrinsic
calibration seems more accurate than the ground truth we
use to compare our results with in this paper.

4.5. Ablation studies

For the ablation studies, we only run our experiments on
sequence 1.

4.5.1 Rotation vs Translation error

By running the training with solely rotation or translation
errors of varying levels, we could observe that the initial
rotation error has more impact on the final accuracy, as we
did not get a satisfactory calibration when we introduced
10° rotation error on all axis. The results are shown in Ta-
ble 4. On the contrary, the translation error is well-handled,
even with 100 cm error set initially on all axis.

4.5.2 Spatiotemporal coupling

We run an ablation study on the optimized parameters and
report the results in Table 5 and Table 6. It shows that if
there is spatial and temporal errors and only one of them is
optimized, it is not possible to obtain a correct calibration.
Which means it is necessary to take into account both type
of error. We can observe in Table 6 that optimizing only
the spatial parameters allows decent pose errors, showing
that they are partly compensating the time offsets. This is
possible because sequence 1 is mostly a straight line with
the car driving at almost constant speed.

Table 7. Ablation study on losses with spatiotemporal calibration
(best and second best).

Translation error Rotation error Temporal error
Loss (cm) (°) (ms)
LC + LD 7.4 ± 1.2 0.31 ± 0.06 4.4 ± 1.0

LC + LD + SSIM 6.9 ± 1.3 0.30 ± 0.04 1.9 ± 0.6

LC + LD + DS 14.4 ± 2.1 0.31 ± 0.14 4.4 ± 0.8

LC + LD + SSIM+DS 6.8 ± 1.0 0.28 ± 0.06 2.8 ± 0.6

4.5.3 Ablation on additional losses

In Table 7, we demonstrate that the overall accuracy of our
method increases when LSSIM and LDS are used. LSSIM

has the largest impact on the performance as it help the im-
plicit scene representation to learn a proper and sharp ge-
ometry from radiometric signals. It makes sense that bet-
ter scene geometry improves the calibration accuracy, espe-
cially between LiDARs and cameras.

5. Conclusions and future works

We presented in this paper MOISST, a novel approach
based on implicit neural scene representation to spatially
and temporally calibrate a multi-sensor system. The pro-
posed approach has the advantage of being scalable to any
number of cameras and LiDARs by relying on the trajec-
tory of a single reference sensor. The proposed approach
does not require any targets, or specific geometric structure
within the scene to achieve accurate results. It is fully au-
tomatic and relies on gradient descent to optimize the cali-
bration parameters. In the future, we expect to address some
limitations of the method by calculating the poses of the ref-
erence sensor automatically instead of relying on the given
ground truth, and by finding a way to bypass the need of pri-
ors for the other sensors. We would also like to add larger
compatibility to other types of sensor, such as rolling shutter
cameras or distorted LiDARs, and the optimization of in-
trinsic parameters. Finally, we would implement the multi-
scene optimization, which should improve robustness by re-
lying on more varied scenes to optimize a specific multi-
sensor system, as well as the ability to manage dynamic
elements in the scene, which are not considered currently.
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Schuster. Automatic camera and range sensor calibration
using a single shot. In IEEE international conference on
robotics and automation (RA-L), 2012. 1, 2

[4] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Gold-
berg. Dex-NeRF: Using a neural radiance field to grasp
transparent objects. In Conference on Robot Learning
(CoRL), 2020. 3



[5] Ganesh Iyer, R Karnik Ram, J Krishna Murthy, and K Mad-
hava Krishna. Calibnet: Geometrically supervised extrin-
sic calibration using 3d spatial transformer networks. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2018. 2

[6] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima
Anandkumar, Minsu Cho, and Jaesik Park. Self-calibrating
neural radiance fields. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2021. 2, 3

[7] Jonathan Kelly and Gaurav S Sukhatme. A general frame-
work for temporal calibration of multiple proprioceptive and
exteroceptive sensors. In Experimental Robotics: The 12th
International Symposium on Experimental Robotics, 2014. 2

[8] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2022. 5

[9] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 2, 3, 5

[10] Xudong Lv, Boya Wang, Ziwen Dou, Dong Ye, and Shuo
Wang. Lccnet: Lidar and camera self-calibration using cost
volume network. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021. 2

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 2021. 2, 3

[12] Arthur Moreau, Nathan Piasco, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Arnaud de La Fortelle. Lens: Localization
enhanced by nerf synthesis. In Conference on Robot Learn-
ing (CoRL), 2022. 3

[13] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 2022. 3, 5

[14] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics (T-RO), 2015. 3

[15] Ashley Napier, Peter Corke, and Paul Newman. Cross-
calibration of push-broom 2d lidars and cameras in natural
scenes. In IEEE International Conference on Robotics and
Automation (ICRA), 2013. 1, 2

[16] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 5

[17] Chanoh Park, Peyman Moghadam, Soohwan Kim, Sridha
Sridharan, and Clinton Fookes. Spatiotemporal camera-lidar
calibration: A targetless and structureless approach. IEEE
Robotics and Automation Letters (RA-L), 2020. 2, 3

[18] Joern Rehder, Paul Beardsley, Roland Siegwart, and Paul
Furgale. Spatio-temporal laser to visual/inertial calibration
with applications to hand-held, large scale scanning. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2014. 1, 2

[19] Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 3

[20] Nick Schneider, Florian Piewak, Christoph Stiller, and Uwe
Franke. Regnet: Multimodal sensor registration using deep
neural networks. In IEEE intelligent vehicles symposium
(IV), 2017. 2

[21] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.
3

[22] Ken Shoemake. Animating rotation with quaternion curves.
In Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, 1985. 3

[23] Hannes Sommer, Raghav Khanna, Igor Gilitschenski,
Zachary Taylor, Roland Siegwart, and Juan Nieto. A low-
cost system for high-rate, high-accuracy temporal calibration
for lidars and cameras. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017. 2

[24] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davi-
son. iMAP: Implicit mapping and positioning in real-time.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 3

[25] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 2020. 3

[26] Zachary Taylor and Juan Nieto. A mutual information ap-
proach to automatic calibration of camera and lidar in natu-
ral environments. In Australian Conference on Robotics and
Automation, 2012. 2

[27] Zachary Taylor and Juan Nieto. Motion-based calibration
of multimodal sensor extrinsics and timing offset estimation.
IEEE Transactions on Robotics (T-RO), 2016. 2

[28] Rafael Peixoto Derenzi Vivacqua, Massimo Bertozzi, Pietro
Cerri, Felipe Nascimento Martins, and Raquel Frizera Vas-
sallo. Self-localization based on visual lane marking maps:
An accurate low-cost approach for autonomous driving.
IEEE Transactions on Intelligent Transportation Systems (T-
ITS), 2017. 1

[29] Michael Waechter, Nils Moehrle, and Michael Goesele. Let
there be color! large-scale texturing of 3d reconstructions. In
European Conference on Computer Vision (ECCV), 2014. 3

[30] Fusang Wang, Arnaud Louys, Nathan Piasco, Moussab Ben-
nehar, Luis Roldão, and Dzmitry Tsishkou. Planerf: Svd un-
supervised 3d plane regularization for nerf large-scale scene
reconstruction. arXiv preprint arXiv:2305.16914, 2023. 5

[31] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing (TIP),
2004. 5

[32] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf–: Neural radiance



fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 2, 3, 4

[33] Jin Hyeok Yoo, Yecheol Kim, Jisong Kim, and Jun Won
Choi. 3d-cvf: Generating joint camera and lidar features us-
ing cross-view spatial feature fusion for 3d object detection.
In European Conference on Computer Vision (ECCV), 2020.
1

[34] Chongjian Yuan, Xiyuan Liu, Xiaoping Hong, and Fu Zhang.
Pixel-level extrinsic self calibration of high resolution lidar
and camera in targetless environments. IEEE Robotics and
Automation Letters (RA-L), 2021. 1, 2, 6

[35] Qilong Zhang and Robert Pless. Extrinsic calibration of a
camera and laser range finder (improves camera calibration).
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2004. 1, 2


